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Binary tree for global p-value

In a binary tree representation of our test described earlier, each level of the tree

corresponds to a specific (deletion, family) pair. Going left at a node represents a deletion event

shared by that family and the edge carries the sharing probabilities for that family; going right

represents a deletion event not shared and that edge carries the probability of 1 minus the sharing

probability. This representation is possible under the assumption of indepedence in sharing

between deletion-family pairs. In our dataset, one could do a full expansion of the 86 level tree,

accumulating the edge probabilities after each expansion to the bottom leaves. For an exact

p-value, we sum the probabilities in the final leaves that were less than or equal to the probability

of the observed deletion event pattern.

To expedite this process, recognize that the full expansion is not needed. Let us first define
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pobs as the probability of the observed deletion event pattern. Everytime we expand a node on the

tree, if the cumulative probability of the expansion is less than or equal to pobs, any further

expansion on that branch is unecessary. This is because (a) the leaves that result from further

expansion of that branch will be less than pobs and will factor into the summation for the p-value

and (b) the sum of those leaves will have the same probability of the cumulative probability up to

that point of the parent node.

In the sample code below, p_current denotes the cumulative probabilities along the edges

and is a placekeeper for when the tree reaches full expansion; level is the current level of the

tree; direction denotes whether expansion is to the left (direction=1) or to the right

(direction=2); max_del is the maximum level of the tree (86 in our application); p_list is a

max_del × 2 matrix, where element [i, 1] is the sharing probability and element [i, 2] is one minus

the sharing probability for the ith deletion-family pair.

binaryTree <- function(p_current, level, direction, max_del, p_list){
# Base case
if(level==max_del){

if(p_current*p_list[max_del, direction] <= p_obs){
return(p_current*p_list[max_del, direction])

}
else{return(0)}

}
p_current = p_current*p_list[level, direction]
if(p_current<=p_obs){

return(p_current)
}
else{

return(expandHelper(p_current, level+1, 1, max_del) +
expandHelper(p_current, level+1, 2, max_del))

}
}

Comparison to alternative methodologies for whole exome copy number analysis

To investigate concordance with alternative methodologies for whole exome analysis of copy

number, we evaluated XHMM, CoNIFER, and CLAMMS (Fromer et al., 2012; Krumm et al.,
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2012; Packer et al., 2016). XHMM and CoNIFER use principal components analysis and singular

value decomposition, respectively, to normalize coverage. CLAMMS is most similar to the

approach implemented here for preprocessing, differing mainly in scale. The filters used to

identify rare deletions can not be straightforwardly adapted to XHMM and CoNIFER as these

pipelines do not distinguish between homozygous and hemizygous deletions. The identification of

homozygous deletions is a critical aspect of the pipeline proposed here as we assume there is only

one deletion allele shared IBD between offspring within a pedigree. Consequently, we exclude

regions where any homozygous deletion is detected in any oral cleft subject. As an alternative to

directly comparing rare deletions identified by the different methodologies, we evaluated (1) the

fraction of rare deletions identified by our approach that are also identified by other

methodologies and (2) the signal to noise ratio (SNR) for any deletion identified by our method

and another method irrespective of rarity status.

Of the 88 rare hemizygous deletions identified in our manuscript, XHMM recovered 61

(69%), CoNIFER recovered 53 (60%), and CLAMMS recovered 32 (36%). None of the alternative

methods identified the rare deletion shared by distantly related offspring on chromosome 6 that

was subsequently validated by qPCR (boxed region, Supplementary Figure 9). The lower

concordance between RV and CLAMMS reflects a fundamental difference in the two strategies for

identifying deletions. CLAMMS uses a mixture model fit at each bin across samples to derive

probabilistic estimates of the mixture component labels that are presumed to represent distinct

copy number states. Cluster-based identification of copy number works best when deletions are

common in the population. The HMM implemented in CLAMMS uses the emission probabilities

from the mixture models to segment the exome and identify copy number variants. By contrast,

our approach puts the bin-level estimates on the same log2-based scale so that segmentation can

be applied directly to the normalized and log2-transformed coverage to identify deletions that are

private to an individual sample. A constrained mixture model is applied following the

segmentation to exclude common deletions.
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To better understand the relative sensitivity for deletion detection, we estimated a SNR for

each deletion identified by multiple methods. Specifically, we estimated the numerator of the SNR

as the absolute difference between median normalized coverage within the deletion and the

median normalized coverage across all autosomal bins. The denominator is given by the median

absolute deviation (MAD) of the autosomal normalized coverage. We found that the SNR for RV

(SNRRV) is greater than the SNR for CoNIFER (SNRCoNIFER) for 85% of the deletions called by

both RV and CoNIFER. For homozygous deletions called by RV, SNRRV is at least two-fold

larger than SNRCoNIFER. Compared to XHMM, 40% of the deletions called as hemizygous by RV

have a larger SNR than XHMM and all but one homozygous deletion called by RV has an SNR

two-fold greater than SNRXHMM (Supplementary Figure 10). We cannot calculate the SNR for

CLAMMS using the above approach as the substantial bin-to-bin heterogeneity in scale

(accomodated by their mixture model) artificially inflates the noise estimate in the denominator.

However, the CLAMMS normalized coverage is qualitatively similar to the RV normalized

coverage following log2 transformation and recentering (Supplementary Figure 11). As discussed

above, the discordance between RV and CLAMMS reflects, in part, diametrically opposed uses of

mixture models rather than differences in preprocessing.

Version of R and supporting packages

• R version 3.3.0 (2016-05-03), x86_64-apple-darwin15.5.0

• Locale: en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4, utils

• Other packages: Biobase 2.32.0, BiocGenerics 0.18.0, Biostrings 2.40.2, CleftExome 0.0.37,

CNPBayes 1.2.2, devtools 1.12.0, foreach 1.4.3, GenomeInfoDb 1.8.3,

GenomicRanges 1.24.2, ggplot2 2.1.0, IRanges 2.6.1, Rsamtools 1.24.0, RUnit 0.4.31,

S4Vectors 0.10.2, SummarizedExperiment 1.2.3, XVector 0.12.0
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• Loaded via a namespace (and not attached): acepack 1.3-3.3, AnnotationDbi 1.34.4,

AnnotationHub 2.4.2, BiocInstaller 1.22.3, BiocParallel 1.6.2, biomaRt 2.28.0,

biovizBase 1.20.0, bitops 1.0-6, BSgenome 1.40.1, chron 2.3-47, cluster 2.0.4, coda 0.18-1,

codetools 0.2-14, colorspace 1.2-6, combinat 0.0-8, data.table 1.9.6, DBI 0.4-1,

dichromat 2.0-0, digest 0.6.9, DNAcopy 1.46.0, ensembldb 1.4.7, foreign 0.8-66,

Formula 1.2-1, GenomicAlignments 1.8.4, GenomicFeatures 1.24.4, grid 3.3.0,

gridExtra 2.2.1, gtable 0.2.0, gtools 3.5.0, Hmisc 3.17-4, htmltools 0.3.5, httpuv 1.3.3,

httr 1.2.1, interactiveDisplayBase 1.10.3, iterators 1.0.8, lattice 0.20-33, latticeExtra 0.6-28,

magrittr 1.5, Matrix 1.2-6, matrixStats 0.50.2, memoise 1.0.0, mime 0.5, munsell 0.4.3,

nnet 7.3-12, plyr 1.8.4, R6 2.1.2, RColorBrewer 1.1-2, Rcpp 0.12.5, RCurl 1.95-4.8,

reshape2 1.4.1, rpart 4.1-10, RSQLite 1.0.0, rtracklayer 1.32.1, scales 0.4.0, shiny 0.13.2,

splines 3.3.0, stringi 1.1.1, stringr 1.0.0, survival 2.39-5, tools 3.3.0,

VariantAnnotation 1.18.5, withr 1.0.2, XML 3.98-1.4, xtable 1.8-2, zlibbioc 1.18.0
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Figure 1 . The density of log2 counts for nine randomly selected samples.
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Figure 2 . GC content versus bin-level counts. A loess scatterplot smoother with span 0.75 (black
line) was used to model the non-linear relationship of GC and bin-counts.
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Figure 3 . Bin size versus GC-adjusted counts. A loess scatterplot smoother with span 0.75
(black line) was used to model the non-linear relationship of the GC residuals and bin-counts.
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Figure 4 . We preprocessed the number of single end tags aligned to 176,912 autosomal bins and
6,409 chromosome X and Y bins for samples ’40’ (column 1) and ’47’ (column 2) in family 28008.
Here, we have plotted every tenth bin. Bin-level summaries of copy number calculated as
log2(count + 1) are adjusted for GC-content and bin size (top). As our interest is in rare deletions
effecting a small fraction of all oral cleft patients, we centered each bin at its median across all of
the oral cleft samples to remove common effects whether technical or biological in origin
(bottom). The resulting bin-level estimates, referred to as M values, correspond to the log
fold-change from the standard diploid genome which generally have low MAD and ACF10.
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Figure 5 . For each sample, we calculated the median absolute deviation (MAD) and the lag 10
autocorrelation of the autosomal M values.
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Figure 6 . A toy example of the permutation scheme implemented to estimate the global sharing
probability. Our simulated dataset is comprised of 3 families (A, B, and C) and three loci. The
observed data is a single shared deletion in Family B (boxed by bold black rectangle) that is not
shared in any of the other families. Note, locus 2 for Family B and locus 3 for families A and B
are not included in the grid because none of these families had deletions at these loci. The rows of
the table indicate all 32 theoretically possible observations for this toy dataset (including the
observed data) and are ordered from top-to-bottom by the sharing probability
(P1 ≤ P2 ≤ . . . ≤ P32) calculated as previously described. The p-value is simply the sum of the
P ’s that are less than or equal to the observed sharing probablity, P30.
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Figure 7 . Regions with high variance are filtered by the mixture models (A), as well as regions in
which additional hemizygous samples were identified implicating common rather than rare
deletions (B). Regions identified as rare deletions by the mixture model had 5 or fewer families
harboring a deletion allele and a log Bayes factor (log BF) comparing the hemizygous model to
the normal model of at least 2 (C and D).
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Figure 8 . Each panel represents a rare deletion identified in the oral cleft study. At the top left
(panel [1,1])is the rare deletion with the highest potential and at bottom right (panel [7, 5]) is the
rare deletion with lowest potential. Populations represented in the 1000G study are ordered along
the y-axis. Regions that have high CNV frequencies in the 1000G subpopulations tend to span
less than 80% of the deletion (gray) identified in our oral cleft study (e.g., panel [3,4]). Such
regions may be more prone to structural alterations, though these CNVs are at least 20% smaller
than the deletions we identified. Regions such as panels [3, 7] and [3, 8] indicate the presence of
several subpopulations with high overlap (black) and CNV frequencies near the 2 percent cutoff.
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Figure 9 . For each of the 88 rare variants identified, we assessed the fraction recovered by other
whole exome methodologies for CNV detection. XHMM and CoNIFER were very similar to each
other and recovered 69% and 60%, respectively, of the rare deletions. Only 36% of the rare
deletions were recovered by CLAMMs. The boxed region highlights samples having a deletion on
chr6 that were also evaluated by qPCR. Of the 6 samples identified as hemizygous by RV, 5 were
validated by qPCR including the first cousins that share the rare deletion in family 17110. Of the
whole exome analysis methods, only RV identified the shared deletion.
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Figure 10 . A comparison of the signal to noise ratio (SNR) of deletions identified in RV and
CoNIFER (left) or RV and XHMM (right) irrespective of rarity status. Neither CoNIFER nor
XHMM distinguish between hemizygous and homozygous deletions. Homozygous deletions called
by RV (black) are more than 2-fold the SNR from XHMM or CoNIFER for all but one deletion.
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Figure 11 . Normalized coverage is comparable for CLAMMS and RV, differing mainly in scale.
Dashed lines correspond to theoretical copy numbers on the RV scale, for which RV is nearly
unbiased. Panels 1 and 2 are hemizygous deletions private to sample 171044_01 (blue). Panel 3 is
an obvious copy number polymorphism that is subsequently excluded in the RV pipeline.
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Figure 12 . The BLAT score rescaled to 0-1 (1=perfect match) for 15 targets in the chr13 rare
deletion (x-axis). All 15 targets have multiple alignments and nearly all targets have an off-target
alignment (gray) as good as the on-target alignment (blue).


